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Abstract

Many retailers today employ inventory management systems based on Re-Order Point Policies, most of which rely
on the assumption that all decreases in product inventory levels result from product sales. Unfortunately, it usually
happens that small but random quantities of the product get lost, stolen or broken without record as time passes,
e.g., as a consequence of shoplifting. This is usual for retailershandling large varieties of inexpensive products,e.g.,
grocery stores. In turn, over time these discrepancies leadto stock freezing problems (see Ref. [1]),i.e., situations
where the system believes the stock is above the re-order point but the actual stock is at zero, and so no replenishments
or sales occur. Motivated by these issues, we model the interaction between sales, losses, replenishments and inventory
levels as a Dynamic Bayesian Network (DBN), where the inventory levels are unobserved (i.e., hidden) variables we
wish to estimate. We present an Expectation-Maximization (EM) algorithm to estimate the parameters of the sale
and loss distributions, which relies on solving a one-dimensional dynamic program for the E-step and on solving two
separate one-dimensional nonlinear programs for the M-step.
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1. Introduction

We consider the sale and replenishment of a product in a storeover a time horizon ofT ≥ 2 time periods. We letI0
denote the initial inventory level, and for each periodt ∈ { 1, . . . , T } we letIt denote the inventory level at the end of
that period. Furthermore, for each periodt we letSt denote the random but observed number of units of the product
sold during that period. Moreover, we assume that replenishments happen after all the sales of the period have been
completed,e.g., after the store closes for the day, and for each periodt we letRt denote the non-random and observed
number of units of the product replenished at the end of that period. Finally, and most importantly, we assume that on
each time period some number of units of the product may be lost, broken or stolen without knowledge of the store’s
manager,i.e., without record. In particular, for each periodt we letLt denote the random and unobserved number of
units of the product lost, broken or stolen during that period. For modeling reasons, we further assume that in each
period all losses occur after all sales have been completed but before any replenishments arrive, although in reality
sale, loss and replenishment epochs may intertwine.

Since the product losses are unobserved, so are the inventory levels, which motivates the main problem of this paper:
Estimating the (unknown) sale and loss distribution parameters along with the (unobserved) inventory levels.
This problem is important because having a good model of the inventory level history of a product is essencial to
knowing when to re-order it so as to keep it available to the customers. Unfortunately, most studies so far have focused
on qualitatively describing the problem and on proposing heuristic replenishment and inspection policies; the reader
is refered to Refs. [1–6] for a sample of previous work. For instance, Ref. [5], which in our opinion is the study most
closely related to our paper, describes a method for estimating the aforementioned parameters by collecting statistics
of past inventory inspection data and pooling the statistics associated with similar products. In contrast, we propose
an algorithm capable of estimating the parameters even in the absence of past inspection data.

http://arxiv.org/abs/1604.01075v1
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2. Assumptions, Problem Statement, and Solution Method

As usual, we assume that for each time period the physical inventory level at the end of the period is equal to the
physical inventory level at the end of the previous period, minus the product sales and losses during the period,
plus the replenishments at the end of the period.I.e.:

∀ t ∈ { 1, . . . , T } : It = It−1 − St − Lt +Rt (1)

Furthermore, for each periodt we assume thatSt has a truncated Poisson distribution with parameterσ > 0 and
upper boundIt−1. I.e., if (Xt)1≤t≤T is a sequence of i.i.d. Poisson random variables with parameterσ then for each
t we haveSt = min {Xt, It−1 }. We choose the Poisson distribution because it is commonly used to model random
demands, although it is fairly straighforward to extend ourmodel to one with a different sales distribution,e.g.,
Bernoulli, Geometric, Binomial, etc. The truncation is justified because in each period the number of units of the
product that the store can sell is limited by the product’s physical inventory level at the end of the previous period;
we do not allow backordering. Moreover, since the value ofIt−1 is all we need to describe the distribution ofSt,
we observe that conditional onIt−1 the random variableSt is independent of all inventory levels up to periodt − 2
and of all sales, losses and replenishments up to periodt− 1. More precisely, for eacht ∈ { 1, . . . , T } :

P (St | (Iτ )0≤τ≤t−1, (Sτ )1≤τ≤t−1, (Lτ )1≤τ≤t−1, (Rτ )1≤τ≤t−1 ) = P (St | It−1 ) (2)

In addition, for each periodt we assume thatLt has a truncated Bernoulli distribution with parameterλ ∈ [0, 1] and
upper boundIt−1 − St, i.e., if (Yt)1≤t≤T is a sequence of i.i.d. Bernoulli random variables with parameterλ then for
eachtwe haveLt = min { Yt, It−1−St }. We choose the Bernoulli distribution because we are interested in modeling
small loss rates (i.e., rates of no more than a unit per period), but our model also allows other discrete distributions.
The truncation relies on the fact that in each period all losses occur once all sales have been completed but before any
replenishments. Also, since the values ofIt−1 andSt completely specify the distribution ofLt, we see that conditional
on It−1 andSt the random variableLt is independent of all inventory levels up to periodt− 2 and of all sales, losses
and replenishments up to periodt− 1. More precisely, for eacht ∈ { 1, . . . , T } :

P (Lt | (Iτ )0≤τ≤t−1, (Sτ )1≤τ≤t−1, (Lτ )1≤τ≤t−1, (Rτ )1≤τ≤t−1 ) = P (Lt | It−1, St ) (3)

Now, we can continue building our model without product lossvariables (i.e., Lt’s) if we note, from Equation (1),
that for eacht ∈ { 1, . . . , T } :

P ( It | It−1, St, Rt ) = P (Lt = It−1 − St +Rt − It | It−1, St ) (4)

Furthermore, combining Equations (3) and (4), we see that conditional onIt−1, St andRt the random variableIt is
independent of all inventory levels up to periodt − 2 and of all sales, losses and replenishments up to periodt − 1.
Moreover, since our assumptions require that for each period t all sales and losses occur before any replenishments, we
see thatSt + Lt ≤ It−1, and so replacingIt−1 using Equation (1) we obtain the boundRt ≤ It. In turn, combining
this bound with the same equation and the fact thatLt ∈ { 0, 1} surely, we have:

∀ t ∈ { 1, . . . , T } : max {Rt , It−1 − St +Rt − 1 } ≤ It ≤ It−1 − St +Rt (5)

Finally, the problem we seek to solve is that of finding a Maximum Likelihood Estimate (MLE) of the sale and loss
distribution parameters(σ, λ), respectively, and of the unobserved inventory level history I , (It)1≤t≤T , given an
initial inventory levelI0, a sales historyS , (St)1≤t≤T , and a replenishment historyR , (Rt)1≤t≤T . More precisely,
we seek to solve the following Mixed-Integer Nonlinear Program (MINLP):

maximize: log Pσ,λ ( I | I0, S, R ) (6)

subject to the constraints:σ > 0; λ ∈ [0, 1]; I ∈ Z
T
≥0; Inequality (5) (7)

Unfortunately, to the best of our knowledge there are no efficient methods for computing a global maximizer to
Problem (6)-(7) with provable guarantees. Therefore, in this work we present an Expectation-Maximization (EM)
Algorithm, which is a greedy algorithm, to compute a local maximizer of the aforementioned function (see Ref. [7]).
The algorithm itself is quite simple, relying on the following iteration:

1. Select initial guesses for the MLEs of the sale and loss distribution parameters, denoted(σ[0], λ[0]).

2. For each iterationk ≥ 1 :

(a) E-step: Using the previous iteration’s MLEs of the sale and loss parameters,i.e., (σ[k−1], λ[k−1]),
compute the current MLE of the inventory level history, denotedI [k] , (It)

[k]
1≤t≤T .

(b) M-step: Using the current MLE of the inventory level history,i.e., I [k], compute the current MLEs of the
sale and loss parameters, denoted(σ[k], λ[k]).
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(c) If the sale and loss parameters haven’t changed,i.e., if (σ[k−1], λ[k−1]) = (σ[k], λ[k]), then terminate.

Execution of the E-step and of the M-step is explained in the following two sections.

3. E-step: Estimation of the Inventory Level History

In this section we seek to compute an inventory level historyI ∈ Z
T
≥0 of maximum log-likelihood, among all those

which satisfy Inequality (5), given the sale and loss distribution parametersσ ∈ R>0 andλ ∈ [0, 1] and conditional
on the initial inventory levelI0 ∈ Z≥0, the sales historyS ∈ Z

T
≥0, and the replenishment historyR ∈ Z

T
≥0.

To start, we note that sinceI0, S andR are fixed, so is their joint likelihood,i.e., Pσ,λ( I0, S, R ). Therefore,
instead of seeking an inventory level history of maximum conditional log-likelihood, we can search for one that
maximizes the joint log-likelihood of all the variables,i.e., the functionI 7→ log Pσ,λ( I0, I, S, R ).

Next, we recognize that the joint likelihood of all the variables can be factored as a Dynamic Bayesian Network (DBN),
i.e., a Bayesian Network with a chain-like structure where each type of node represents a time history (see Ref. [8]).
Certainly, from the statistical assumptions put forth in Section 2, we can represent the joint likelihood function as a
DBN where each variable is a node, and where the nodes’ parents are as follows:

• NodesI0, R1, . . . , andRT have no parents.

• For each periodt ∈ { 1, . . . , T }, the parent of nodeSt is nodeIt−1.

• For each periodt ∈ { 1, . . . , T }, the parents of nodeIt are nodesIt−1, St andRt.

IT−1I2 · · ·I1I0 IT

ST−1S2S1 ST

RT−1R2R1 RT

· · ·

Figure 1: Our Dynamic Bayesian Network (DBN) model. Here, deterministic variable nodes are shown in green,
observed random variable nodes are shown in blue, and unobserved random variable nodes are shown in red.

Now, with this representation in mind we can factor the jointlog-likelihood function as follows:

log Pσ,λ( I0, I, S, R ) = log

(
T∏

t=1

Pσ(St | It−1 )Pλ( It | It−1, St, Rt )

)

=

T−1∑

t=1

(

log Pσ(St | It−1 ) + log Pλ( It | It−1, St, Rt )

)

(8)

Furthermore, if for eacht ∈ { 1, . . . , T } we define the function

φ
[t]
σ,λ( It−1, It ) , log Pσ(St | It−1 ) + log Pλ( It | It−1, St, Rt ) , (9)

then it is clear that our problem is equivalent to that of maximizing the function:

Φσ,λ( I ) =

T∑

t=1

φ
[t]
σ,λ( It−1, It ) (10)

Moreover, the function above can be maximized sequentiallyby means of a Dynamic Programming (DP) approach.
Indeed, notice the following:

max
I ∈Z

T

≥0

Φσ,λ( I ) = max
I1, ..., IT−1

[ ( T−1∑

t=1

φ
[t]
σ,λ( It−1, It )

)

+ max
IT ∈ Z≥0

φ
[T ]
σ,λ( IT−1, IT )

︸ ︷︷ ︸

, ψ
[T−1]
σ,λ ( IT−1 )

]
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= max
I1, ..., IT−2

[ ( T−2∑

t=1

φ
[t]
σ,λ( It−1, It )

)

+ max
IT−1 ∈Z≥0

[

φ
[T−1]
σ,λ ( IT−2, IT−1 ) + ψ

[T−1]
σ,λ ( IT−1 )

]

︸ ︷︷ ︸

, ψ
[T−2]
σ,λ ( IT−2 )

]

= · · ·

= max
I1, ..., IT−k

[ ( T−k∑

t=1

φ
[t]
σ,λ( It−1, It )

)

+ max
IT−k+1 ∈Z≥0

[

φ
[T−k+1]
σ,λ ( IT−k, IT−k+1 ) + ψ

[T−k+1]
σ,λ ( IT−k+1 )

]

︸ ︷︷ ︸

, ψ
[T−k]
σ,λ ( IT−k )

]

(11)

Hence, in light of the previous arguments, Algorithm 1 computes a sequence of feasible inventory levelsI∗ ∈ Z
T
≥0

which maximizes functionΦσ,λ among all feasible inventory level histories.

Algorithm 1: Dynamic Programming Algorithm for the E-step

Data: Sale and loss distribution parametersσ ∈ R>0 andλ ∈ [0, 1], initial inventory levelI0 ∈ Z≥0,
sales historyS , (St)1≤t≤T ∈ Z

T
≥0, replenishment historyR , (Rt)1≤t≤T ∈ Z

T
≥0.

Result: Maximum likelihood estimate (MLE) of the inventory level history I∗ , (I∗t )1≤t≤T .
// SETUP: Computes upper bounds on the feasible inventory levels

1 let Imax
0 = I0

2 foreach t ∈ ( 1, . . . , T ) do
3 let Imax

t = Imax
t−1 − St +Rt

// BACKWARD PASS: Computes the optimal It+1’s as functions of the It’s

4 let ψ[T ]
σ,λ be a zero function,i.e., ψ[T ]

σ,λ : Z≥0 7→ {0}

5 foreach t ∈ (T − 1, . . . , 0 ) do
6 foreach It ∈ { 0, . . . , Imax

t } do
7 letψ[t]

σ,λ( It ) be the maximum with respect toIt+1, andω[t]
σ,λ( It ) be a maximizing value ofIt+1,

respectively, of the function:

It 7→ φ
[t+1]
σ,λ ( It, It+1 ) + ψ

[t+1]
σ,λ ( It+1 )

Note: This is a finite maximization, which can be carried by considering all values ofIt+1 such that
the pair( It, It+1) satisfies Inequality (5).

// FORWARD PASS: Constructs the optimal sequence of It’s

8 foreach t ∈ ( 1, . . . , T ) do
9 let I∗t = ω

[t−1]
σ,λ ( It−1 )

10 return I∗ , ( I∗1 , . . . , I
∗
T )

4. M-step: Estimation of the Sale and Loss Distribution Parameters

In this section we seek to compute values of the sale and loss distribution parametersσ ∈ R>0 andλ ∈ [0, 1],
given the initial inventory levelI0 ∈ Z≥0, a feasible inventory level historyI ∈ Z

T
≥0, the sales historyS ∈ Z

T
≥0,

and the replenishment historyR ∈ Z
T
≥0. To start, we note that in light of the arguments put forth in Section 3,

this task is equivalent to that of maximizing functionΦσ,λ over all feasible values of the parametersσ andλ. In turn,
from Equations (8)-(10) we recognize that the aforementioned function is the sum of functions which depend only on
the parameterσ with the sum of functions which depend only on the parameterλ. Indeed:
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Φσ,λ( I ) =

(
T∑

t=1

log Pσ(St | It−1 )

)

︸ ︷︷ ︸

, Φs(σ)

+

(
T∑

t=1

log Pλ( It | It−1, St, Rt )

)

︸ ︷︷ ︸

, Φℓ(λ)

(12)

Therefore, computing the optimal values of the parametersσ andλ can be readily carried by separately computing
the maximizers of the single-argument functionsΦs andΦℓ over their respective domains, which in turn can be
executed using any method for optimizing continuously differentiable nonlinear functions,e.g., gradient ascent,
Newton’s Method, BFGS, etc.

5. Inventory Level Estimation

Once the sale and loss distribution parameters have been estimated, the probability distribution over inventory levels
conditional on the initial inventory and on the sales and replenishments up to periodt, i.e.,

ρt( It ) , Pσ,λ( It | I0, S1, . . . , St, R1, . . . , Rt ) , (13)

can be easily and efficiently computed. For this purpose, we first note thatρ1( I1 ) = Pσ,λ( I1 | I0, S1, R1 ) can be
computed directly given the assumptions put forth in Section 2. Next, as noted in Ref. [5], the probability distributions
associated with periodst ≥ 2 can be sequentially computed according to the following recursion:

∀ It ∈ { 0, . . . , Imax
t } : ρt( It ) =

Imax

t−1∑

It−1 =0

ρt−1( It−1 )Pσ,λ( It | It−1, St, Rt ) (14)

Lastly, once we have computedρt( It ), we can calculate the Marginal Maximum Likelihood Estimate(MMLE) of the
inventory level conditional on all the information observed up to timet as:

IMMLE
t , argmax

It ∈{ 0, ..., Imax

t
}

ρt( It ) (15)

6. Experiments and Results

In this section we experimentally evaluate the performanceof our EM Algorithm by means of simple simulations.
In particular, we simulate a ‘naive’ inventory management system which computes the current inventory as the previous
inventory minus current sales plus current replenishments(i.e., It = It−1 − St + Rt for each periodt) and follows
a (Q, R ) policy. The system begins with an initial inventory level ofI0 = 15 units and it re-orders an amount of
Q = 20 units every time the inventory level reaches or falls belowR = 10 units. We simulate the naive system’s
evolution by feeding it random sales with the distributionsdescribed in Section 2 and parameterσ = 5.0, which is
sampled considering the true physical inventory. Furthermore, we setup random losses with parameterλ = 0.25,
which over a time horizon ofT = 60 periods usually causes the naive system to freeze.

With this setup in place, we estimate the true physical inventory by running our EM Algorithm until the absolute
changes of the estimates ofσ andλ are within 0.01 units, respectively. Regarding the initialguesses of the parameters,
we chooseσ[0] to be the average of the sales during the experiment’s horizon, as it seems like a reasonable choice, and
we chooseλ[0] = 0.5, as it is the midpoint of the interval[0, 1]. The E-step is carried exactly as described in Section 3,
while the M-step is carried approximately using 20 iterations of gradient ascent. Figure 2 shows the sale and inventory
level histories for a typical simulation, where the inventory level according to the naive system is shown in red,
the MMLE of the inventory level conditional on all previous observations (see Equation (15)) is shown in blue, and
the true physical inventory level is shown in green.

Noteworthily, for most of the examples we simulated our EM Algorithm terminated after less than five iterations.

7. Future Research

There are several lines of future research which can stem from the work presented in this paper. For instance,
the performance of our EM Algorithm should be evaluated on real data and compared to the performance of similar
methods proposed in the literature. This would be interesting because in the real world the true physical inventory
levels are not known. Another avenue of research is the extension of our model to one that can optimally decide
on product re-orders and inventory inspections. This wouldbe challenging because it leads to a Partially-observable
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Figure 2: Sales and inventory time histories for a typical simulation. Here the initial guesses whereσ[0] = 3.72 and
λ[0] = 0.50, respectively. For this example, our EM Algorithm terminated after only two iterations, with estimates
σ∗ = 5.20 andλ∗ = 0.32.

Markov Decision Process (POMDP) formulation, and its is well-known that even approximating the optimal policies
for POMDPs can be, in general, computationally intractable.
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