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Abstract

Many retailers today employ inventory management systessed on Re-Order Point Policies, most of which rely
on the assumption that all decreases in product inventegtdeesult from product sales. Unfortunately, it usually
happens that small but random quantities of the productagt stolen or broken without record as time passes,
e.g., as a consequence of shoplifting. This is usual for retaliarglling large varieties of inexpensive produetg,,
grocery stores. In turn, over time these discrepanciestteaibck freezing problems (see RefD[l]),e., situations
where the system believes the stock is above the re-ordetrimatithe actual stock is at zero, and so no replenishments
or sales occur. Motivated by these issues, we model thertten between sales, losses, replenishments and inyentor
levels as a Dynamic Bayesian Network (DBN), where the inmgnlevels are unobservedd, hidden) variables we
wish to estimate. We present an Expectation-MaximizatielM) algorithm to estimate the parameters of the sale
and loss distributions, which relies on solving a one-digi@mal dynamic program for the E-step and on solving two
separate one-dimensional nonlinear programs for the pl-ste
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1. Introduction

We consider the sale and replenishment of a product in a st@rea time horizon of” > 2 time periods. We lef,
denote the initial inventory level, and for each pericd { 1, ..., T'} we letl; denote the inventory level at the end of
that period. Furthermore, for each periode let.S; denote the random but observed number of units of the product
sold during that period. Moreover, we assume that repleméstis happen after all the sales of the period have been
completede.g., after the store closes for the day, and for each peried let R, denote the non-random and observed
number of units of the product replenished at the end of teabd. Finally, and most importantly, we assume that on
each time period some number of units of the product may liebdosken or stolen without knowledge of the store’s
manageri.e., without record. In particular, for each periodve let L, denote the random and unobserved number of
units of the product lost, broken or stolen during that pekriBor modeling reasons, we further assume that in each
period all losses occur after all sales have been completelddfore any replenishments arrive, although in reality
sale, loss and replenishment epochs may intertwine.

Since the product losses are unobserved, so are the inydexerts, which motivates the main problem of this paper:
Estimating the (unknown) sale and loss distribution patansealong with the (unobserved) inventory levels.
This problem is important because having a good model ofritienitory level history of a product is essencial to
knowing when to re-order it so as to keep it available to tre@mers. Unfortunately, most studies so far have focused
on qualitatively describing the problem and on proposingriséic replenishment and inspection policies; the reader
is refered to Refs[[ﬂB] for a sample of previous work. Fastance, Ref.l]5], which in our opinion is the study most
closely related to our paper, describes a method for estiptte aforementioned parameters by collecting stasistic
of past inventory inspection data and pooling the staisagsociated with similar products. In contrast, we propose
an algorithm capable of estimating the parameters evereiatilsence of past inspection data.
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2. Assumptions, Problem Statement, and Solution Method

As usual, we assume that for each time period the physicahiovy level at the end of the period is equal to the
physical inventory level at the end of the previous periodhus the product sales and losses during the period,
plus the replenishments at the end of the periaat.
Vte{l,...,T}:It:It,l—St—Lt—i—Rt (1)

Furthermore, for each periadwe assume tha$; has a truncated Poisson distribution with parametes 0 and
upper bound;_;. l.e, if (X;)i1<t<7 is a sequence of i.i.d. Poisson random variables with paeamehen for each
t we haveS; = min { X;, I;_1 }. We choose the Poisson distribution because it is commadyg to model random
demands, although it is fairly straighforward to extend model to one with a different sales distributiong.,
Bernoulli, Geometric, Binomial, etc. The truncation istjfied because in each period the number of units of the
product that the store can sell is limited by the product'gsital inventory level at the end of the previous period;
we do not allow backordering. Moreover, since the valud,of; is all we need to describe the distribution &f,
we observe that conditional afp_; the random variablé, is independent of all inventory levels up to peribd 2
and of all sales, losses and replenishments up to periotl. More precisely, for eache {1, ..., T}:

P (St | (Ir)ocr<i—1, (Sr)icr<i—1, (Lr)i<r<i—1, (Rr)i<r<t—1) = P(S: | L—1) 2
In addition, for each periodwe assume thal; has a truncated Bernoulli distribution with parametet [0, 1] and
upper bound;_; — Sy, i.e, if (Y;)1<i<7 is @ sequence of i.i.d. Bernoulli random variables with psaterA then for
eacht we havel;, = min{Y;, I,_1 —S; }. We choose the Bernoulli distribution because we are iatedsn modeling
small loss ratesi ., rates of no more than a unit per period), but our model alsmvallother discrete distributions.
The truncation relies on the fact that in each period alldessccur once all sales have been completed but before any
replenishments. Also, since the valuedof; andS; completely specify the distribution df,, we see that conditional
on I;_; andS; the random variablé, is independent of all inventory levels up to period 2 and of all sales, losses
and replenishments up to period- 1. More precisely, for eache {1, ..., T}:

P(L: | (Ir)o<r<t—1, (Sr)i<r<t—1, (Lr)i<r<t—1, (Rr)i<r<t—1) = P(L¢ | L1, St) (3

Now, we can continue building our model without product leasiables i.e., L;'s) if we note, from Equation{1),
thatforeacht € {1, ..., T}:

P(I; | I4—1, S, Re) = P(Ly =11 — St +Re — I | 11, St) 4)

Furthermore, combining Equatiorid (3) ahd (4), we see thaditonal onI; 1, S; and R; the random variablé, is
independent of all inventory levels up to peribd- 2 and of all sales, losses and replenishments up to period.
Moreover, since our assumptions require that for each gead sales and losses occur before any replenishments, we
see thatS; + L; < I;_1, and so replacind;_, using Equation{l1) we obtain the bouRd < I;. In turn, combining

this bound with the same equation and the fact that { 0,1} surely, we have:

Vie{l,...,T}: max{ Ry, ;1 —S;+R -1} < I, < I,_1 - S+ Ry (5)

Finally, the problem we seek to solve is that of finding a MaximLikelihood Estimate (MLE) of the sale and loss
distribution parameterés, \), respectively, and of the unobserved inventory level jsfo= (I;)1<;<7, given an
initial inventory levelly, a sales historg = (St)1<t<T, and areplenishment histoR/ £ (R¢)1<t<T. More precisely,
we seek to solve the following Mixed-Integer Nonlinear Reog (MINLP):

maximize: log P, (I | Iy, S, R) (6)
subject to the constraintsio > 0; A € [0,1]; T € ZL; Inequality [3) (7

Unfortunately, to the best of our knowledge there are noiefficmethods for computing a global maximizer to
Problem [[6){(¥) with provable guarantees. Therefore, is Work we present an Expectation-Maximization (EM)
Algorithm, which is a greedy algorithm, to compute a locakin@zer of the aforementioned function (see REf. [7D).
The algorithm itself is quite simple, relying on the follovg iteration:

1. Select initial guesses for the MLEs of the sale and logsilligion parameters, denotéd(®, A[%).

2. For each iteratioh > 1:

(a) E-step: Using the previous iteration’s MLEs of the sale and loss peters,i.e., (o1 AlF=1]),
compute the current MLE of the inventory level history, dea <] £ (It)[lkitg:r-

(b) M-step: Using the current MLE of the inventory level histoiye., I/, compute the current MLEs of the

sale and loss parameters, dendied!, \[*]).
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(c) If the sale and loss parameters haven't changedif (o~ AlF=1) = (gl¥ \[¥) then terminate.
Execution of the E-step and of the M-step is explained in tilewing two sections.

3. E-step: Estimation of the Inventory Level History

In this section we seek to compute an inventory level hisfory ZZ , of maximum log-likelihood, among all those
which satisfy Inequality[{55), given the sale and loss distiion parameters € R~ and\ € [0, 1] and conditional
on the initial inventory levell, € Zs, the sales historys € ZZ,, and the replenishment histoly € ZZ,.
To start, we note that sinck, S and R are fixed, so is their joint likelihood,e., Py (1o, S, R). Therefore,
instead of seeking an inventory level history of maximumaditanal log-likelihood, we can search for one that

maximizes the joint log-likelihood of all the variablés,, the functionl — log P, x(lo, I, S, R).

Next, we recognize that the joint likelihood of all the véniias can be factored as a Dynamic Bayesian Network (DBN),
i.e, a Bayesian Network with a chain-like structure where eaple tyf node represents a time history (see Ref. [8]).
Certainly, from the statistical assumptions put forth ict®m[2, we can represent the joint likelihood function as a
DBN where each variable is a node, and where the nodes’ jgaemts follows:

e Nodesly, Ry, ..., andR7 have no parents.
e Foreachperiod e {1, ..., T}, the parent of nod§; is nodel;_;.
e Foreach period € {1, ..., T}, the parents of nodg are noded;_1, S; andR;.

Figure 1: Our Dynamic Bayesian Network (DBN) model. Heretedministic variable nodes are shown in green,
observed random variable nodes are shown in blue, and unveldlseindom variable nodes are shown in red.

Now, with this representation in mind we can factor the jéagilikelihood function as follows:

T
log ( T Po(Se | Lt )PA( T | Tia, S, Rt)>

t=1

log P, (1o, I, S, R)

T-1

= Z ( log Py (St | I;—1) +1log PA(I; | Ii—1, S, Rt)) (8)
t=1
Furthermore, if for eache {1, ..., T} we define the function
S\ (Lo1, It) 2 log Po(Si | Ieoy) +1log PA(I; | L1, St, Re), 9)
then it is clear that our problem is equivalent to that of m@xing the function:
T
Pon(1) = Z E,t,],\(ftflv 1) (10)
t=1

Moreover, the function above can be maximized sequentigllpneans of a Dynamic Programming (DP) approach.
Indeed, naotice the following:

T-1
max P, \(/) = max [ (Z ¢E}A(It—1, It)) + max ¢[Zl\(IT—1a Ir)

T
Iezs, Iy ooy Ir—a =1 It €Z>0
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2

T
= max [( ¢E}A(It—lalt)>+ max |:¢[ ](IT 9, I 1)+’l/10)\ (IT 1):| ]

Iy, Ip— Ir_1€Z
1y dm—2 =1 T-1 >0

2 2 (I y)

Iy, oo IT g It k41 €ZL>0

T—k
= max |: < Z gf)a A It 1, It)> max |:¢l[7’1:>\—k+1](ITk, IT7k+1) w[T k+1] (IT7k+1 ):| :|
t=1

£ 3 (I
(11)
Hence, in light of the previous arguments, Algorithin 1 cotesa sequence of feasible inventory levElse ZZ,
which maximizes functio®, , among all feasible inventory level histories. N

Algorithm 1: Dynamic Programming Algorithm for the E-step

Data: Sale and loss distribution parameters R~ and\ € [0, 1], initial inventory levell € Z>,
sales historys £ (S;)1<i<r € ZZL,, replenishment histor £ (R;)1<;<7 € Z%,,.

Result Maximum likelihood estimate_(MLE) of the inventory levebltory I* £ (It*)lg_tST.

// SETUP: Computes upper bounds on the feasible inventory levels

1 let Irer = I
2 foreach t € (1,...,T)do

w

~N o o b~

10

| letrper = e — S, + R,
// BACKWARD PASS: Computes the optimal I;11’s as functions of the [;'s
let w([,T; be a zero function,e., wLTi : Lo — {0}
foreacht e (T'—1,...,0)do
foreach I; € {0, ..., I;"** } do

let zpffy&( I; ) be the maximum with respect f@, 1, andw%( 1; ) be a maximizing value of;, 1,
respectively, of the function:

Iy — ¢[t+1](fta Iiy1) + 9 tH]( 1)

Note: This is a finite maximization, which can be carried by consitgall values off;; such that
| the pair( I, I;11) satisfies Inequality{5).

// FORWARD PASS: Constructs the optimal sequence of [;’s
foreach t € (1,...,T)do

| letr; _w[t/\”([t,l)
return I* = (I3, ..., I})

4. M-step: Estimation of the Sale and Loss Distribution Paraneters

In this section we seek to compute values of the sale and ligggbdtion parameters € R and\ € [0, 1]
given the initial inventory level, € Z>(, a feasible inventory level history € Z>0, the sales histong € Z>0,
and the replenishment histofy € ZZ,. To start, we note that in light of the arguments put forth act®n[3,
this task is equivalent to that of maximizing functidp , over all feasible values of the parameterand. In turn,

from Equations[(8)E(T0) we recognize that the aforemetidiinction is the sum of functions which depend only on

the parametes with the sum of functions which depend only on the paramgténdeed:
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T T
.0 (1) = <Zlog Po(Se | L1 )) + (Zlog Pa(I¢ | It—1, St, Rt)) (12)

t=1 t=1

2 (o) 2 0y(N)
Therefore, computing the optimal values of the parameteaad A can be readily carried by separately computing
the maximizers of the single-argument functiohs and ®, over their respective domains, which in turn can be

executed using any method for optimizing continuouslyed@htiable nonlinear functiongg., gradient ascent,
Newton’s Method, BFGS, etc.

5. Inventory Level Estimation

Once the sale and loss distribution parameters have baeragsd, the probability distribution over inventory lesel
conditional on the initial inventory and on the sales andeeighments up to perioqdi.e.,

Pt(It) é ]P)a’,)\([t |IOa Sla ey St7 Rla ey Rt)v (13)

can be easily and efficiently computed. For this purpose, merfote thap: (1 ) = P, A (1 | I, S1, R1) can be
computed directly given the assumptions put forth in Se@ioNext, as noted in Reﬂ[S], the probability distributson
associated with periods> 2 can be sequentially computed according to the followingrgion:

max
It—l

VI, e {0,...., "} : p(I;) = Z pr—1(Le—1)Por(Iy | I—1, Si, Ry) (14)
Ii_1=0
Lastly, once we have computed I, ), we can calculate the Marginal Maximum Likelihood Estim@#LE) of the
inventory level conditional on all the information obsetug to timet as:

[MMEE 2 argmax  pi( 1) (15)
I € {0, ..., I/o= }

6. Experiments and Results

In this section we experimentally evaluate the performasfaeur EM Algorithm by means of simple simulations.
In particular, we simulate a ‘naive’ inventory managemestesm which computes the currentinventory as the previous
inventory minus current sales plus current replenishm@gmrtsl, = I, , — S; + R, for each period) and follows

a (9, R) policy. The system begins with an initial inventory levellgf = 15 units and it re-orders an amount of
Q = 20 units every time the inventory level reaches or falls be®®w= 10 units. We simulate the naive system’s
evolution by feeding it random sales with the distributiatescribed in Sectidi 2 and paramete= 5.0, which is
sampled considering the true physical inventory. Furtleeenwe setup random losses with paramater 0.25,
which over a time horizon df' = 60 periods usually causes the naive system to freeze.

With this setup in place, we estimate the true physical itmgnby running our EM Algorithm until the absolute
changes of the estimates@find\ are within 0.01 units, respectively. Regarding the inigiaésses of the parameters,
we choose”! to be the average of the sales during the experiment’s hgrizoit seems like a reasonable choice, and
we choose\’l = 0.5, as it is the midpoint of the intervéd, 1]. The E-step is carried exactly as described in Seflion 3,
while the M-step is carried approximately using 20 itenasiof gradient ascent. Figurk 2 shows the sale and inventory
level histories for a typical simulation, where the invagttevel according to the naive system is shown in red,
the MMLE of the inventory level conditional on all previoubservations (see Equatidn{15)) is shown in blue, and
the true physical inventory level is shown in green.

Noteworthily, for most of the examples we simulated our ENg@tithm terminated after less than five iterations.

7. Future Research

There are several lines of future research which can stem fhe work presented in this paper. For instance,
the performance of our EM Algorithm should be evaluated @ data and compared to the performance of similar
methods proposed in the literature. This would be intemgdtiecause in the real world the true physical inventory
levels are not known. Another avenue of research is the siterof our model to one that can optimally decide
on product re-orders and inventory inspections. This waelahallenging because it leads to a Partially-observable
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Figure 2: Sales and inventory time histories for a typicaiidation. Here the initial guesses wheré = 3.72 and
MO = 0.50, respectively. For this example, our EM Algorithm termightfter only two iterations, with estimates
o* =5.20 and\* = 0.32.

Markov Decision Process (POMDP) formulation, and its islskabwn that even approximating the optimal policies
for POMDPs can be, in general, computationally intractable
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